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The authors propose to employ t-z functions for estimating the load-

movement response of a pile subjected to a static loading test. 

Judging by the authors’ Fig. 1, the proposed t-z functions are 

“spring-slider” relations, that is, they model the shaft and toe 

resistances as bi-linear with an elastic initial part followed by a 

plastic part representing the ultimate resistance (capacity). The 

authors state that the capacity is mobilized at a pile-head movement 

of 5 % of the pile diameter, which definition they also apply to the 

pile toe load-movement response. 

 

First, I would expect that the movement should be the movement at 

the pile element considered—a pile does not have to be very long 

before a substantial portion of the movement at the pile head is due 

to pile axial compression. It is not logical to assume that the length 

of the initial elastic response decreases with depth, all other factors 

being equal. 

 

Second, applying an elastic-plastic model for the pile toe response is 

incorrect. The response of pile toe—usually denoted “q-z” function 

to separate it from the “t-z” function expressing the shaft response—

does not show an ultimate resistance, but is a gently rising curve 

showing no kinks or explicit changes in curvature. 

 

Third, the pile diameter has nothing to do with the changeover from 

elastic to plastic response, nor indeed, anything to do with the 

ultimate shaft resistance. The magnitude of the movement at the 

point of transition from elastic to plastic response may differ in 

different soils. However, it is usually also much smaller than the 

authors’ mentioned range of 10 to 20 mm. Moreover, it is 

independent of the pile diameter, be the pile a small diameter pile, 

say 300 mm, or a large one, say 3,000 mm, and be the pile shape 

circular or square, or rectangular, such as a barrette, which can have 

one side about 1 m length and the other between 3 to 8 m length.  

 

Fourth, the elastic-plastic response is too simplified a model for the 

shaft resistance. While it can occur, a strain-hardening response is 

more common, particularly in sand that includes silt and clay. Other 

soil types can exhibit strain-softening response, particularly in soft 

clays. 

 

The mathematical expressions for four common t-z functions are 

given in Eqs. 1 through 4 (Fellenius 2012). Eq. 1 presents the 

relation for the “Ratio Function” so called because it states that the 

ratio between two values of unit shaft resistance (or load) is equal to 

the ratio between the movements produced by the same loads raised 

to an exponent, ϴ. 

 

Eq. 2 presents the equation for a hyperbolic relation of the stress as a 

function of the movement. 
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where r1 = toe resistance for a point on the curve, 

    e.g., Point 1 

  δ1 = movement for Point 1 

  r2 = toe resistance for a point on the curve, 

    e.g., Point 2 

  δ2 = movement for Point 2 

  ϴ = an exponent 
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where r = force variable 

  δ = movement variable 

  C1 = the slope of the line in a r/δ vs. δ diagram;  

    the Chin-Kondner plot 

  C2 = ordinate intercept the r/δ vs. δ diagram 

 

 

 

 

          r1/δ1 = any load/movement pair  

  ru = resistance occurring at infinite movement 

 

 

Eq. 3 presents a relation for the ultimate (peak) resistance with the 

curve following the Hansen 80-% relation, which in words states 

that “the peak resistance is the stress that occurred for a movement 

that is four times the movement that occurred for the load equal to 

80 % of the peak value”. The 80 % function models a strain-

softening response. It is not suitable for modeling the pile toe 

response. 

 

 

           (3) 

 

 

where r = shaft shear force variable 

  δ = movement variable 

  C1 = the slope of the straight line in the 

    √δ/r versus movement (δ) diagram 

  C2 = ordinate intercept of the straight line 

    in the √δ/r versus movement (δ) diagram 

 

 

 

 

 

  ru = ultimate resistance 

  δu = movement at ultimate resistance 

 

 

 

 

 

 

Eq. 4 presents a relation proposed by Vander Veen (1953), which is 

useful for expressing elasto-plastic response. 
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Fig. 1    Typical t-z functions produced by Eqs. 1 through 4 

_______________________________________________________ 

 

 

where r = shaft shear force variable (or toe stress) 

  ru = ultimate resistance 

  δ = movement variable 

  b = coefficient 

  e = base of the natural logarithm = 2.718 

 

Using the equations to fit a theoretical curve to measured stress-

movement curve is simple. Figure 1 shows curves developed from 

the equations assigning the curves to go through a common point, 

rA, at a movement value of 4 mm and an abscissa-value of 100, say 

100 % of stress, load, force, whatever. The assigned point 

determines the curve for the 80 % function. Due to the interrelation 

between the factors expressed in the other equations, adding only 

one new parameter is sufficient to determine each curve. Choosing a 

peak at 15 mm movement for 1.25 times the 100-load (the 100 then 

becomes the 80-% value) further demonstrates the strain-softening 

connotation of the 80 % function. The curves can easily be 

reproduced in a simple spread-sheet calculation from the equations 

or by the UniPile program (Fellenius and Goudreault 1999). 

 

When back-calculating a shaft resistance stress-movement response 

measured in a static loading test, I have found that a good fit to the 

measured values can be obtained by one or two of the four 

equations. It is often quite difficult to say beforehand—to predict—

which function would deliver the best fit. Usually, the final fit shows 

that the elasto-plastic (or elastic-plastic) response is the least suitable 

relation. For pile toe-resistance, most often the best fit is achieved 

with the Ratio Function, while never with the elasto-plastic or the 

strain softening functions. Of course, as the pile toe load-movement 

curve is much flatter for the toe as opposed to the pile shaft curve, 

the particular parameters to input in the calculations will not be the 

same as those used to model the shaft resistance response. Also the 

Hyperbolic Function can be suitable for modeling the pile toe 

response, in particular for a pile subjected to residual load at the pile 

toe. 

 

 

 

 

 

Often the results of a static loading test are only available as load 

and movement for the pile head up to a maximum load or to a load 

perceived as the “ultimate” resistance. To simulate that curve by 

modeling a pile as a number of elements affected by a shaft 

resistance response corresponding to a series of t-z functions and a 

pile toe response corresponding to a q-z function is relatively simple 

process (Fellenius and Goudreault 1999). However, as in every 

modeling of a process that reacts to three or more parameters, a final 

good fit can be a result of compensating errors in the choice of 

parameters and assumptions. Then, a good fit does not prove 

anything. The only assured way is to fit calculated t-z curves to 

loads and movements measured at individual pile elements in an 

instrumented pile (e.g., Fellenius and Nguyen 2012). When the so-

fitted individual elements are integrated in simultaneous calculation 

to produce a simulated pile-head load-movement curve that shows to 

agree reasonable well with the measured curve, then, one can be 

justified in assuming that the various soil parameters and t-z curves 

are representative for the site and piles and expect that a theoretical 

calculations of another pile would serve as a reasonable prediction. 

 

As a final point, the sum of the peak resistance for all elements will 

not be the same value as the “ultimate” resistance determined from 

the pile-head load-movement curve, because at an applied pile-head 

load equal to the ultimate resistance evaluated from the curve, the 

peak resistance has been passed and the upper elements will have a 

resistance value that is smaller (strain-hardening) or larger (strain-

softening) than the sum of their individual peak values. Note also 

that in strain-softening soils, the pile-head load-movement curve 

may indicate a post peak response even when the pile toe resistance 

is increasing, as it always does. 

 

While I wholeheartedly agree with the authors that evaluation of 

measured a pile response and design of piled foundations should be 

based on the load-movement response expressed in t-z and q-z 

functions, I find the authors’ “spring-slider” function somewhat 

rudimentary, however, and suggest that more developed functions 

be employed, as detailed in this Discussion. 
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The authors relates their approach to Load and Resistance Factor 

Design, LFRD, of drilled shafts in sand on three definitions:  pile 

capacity determined in a static loading test, limit unit shaft 

resistance”, and limit pile base resistance, alternatively expressed as 

“ultimate” toe resistance. 

 

First, the authors define pile capacity determined in a static loading 

test as the load that induces a pile head movement equal to 10 % of 

the pile diameter.  The definition has its origin in a mistaken 

quotation of a now 70 year old statement by Terzaghi (1942).  

Terzaghi wrote: “the failure load is not reached unless the 

penetration of the pile is at least equal to 10 % of the diameter at the 

tip (toe) of the pile”.  For full quotation and context, see Likins et al. 

(2012).  Note, Terzaghi did not define the capacity as the load 

generating a movement equal to 10 percent of the pile head 

diameter, he emphatically stated that whatever definition of capacity 

or ultimate resistance used, it must not be applied until the pile toe 

has moved at least a distance corresponding to 10 percent of the pile 

toe diameter.  (The pile head will then have moved an additional 

distance equal to the pile compression). 

 

Most certainly, Terzaghi did not suggest that a fixed pile-head 

movement value, however determined, could serve as a definition of 

capacity.  A definition based on a value of absolute movement of the 

pile head disregards the effect of pile compression, which can be a 

significant part of the pile head movement.  A short pile will 

undergo only small compression for the applied load, whereas a long 

pile will have a larger pile compression. 

 

Most full-scale static loading tests where the pile shaft resistance is 

essentially mobilized are carried out to pile head movements in the 

range of 10 mm through 30 mm.  For some of these tests, the pile-

head load-movement curve may trend to progressively increasing 

movement for increasing load, implying a total pile capacity as 

interpreted by some definition or other.  Basing a capacity definition 

on the load-movement curve or curvature is satisfactory for an 

engineering application.  A distinct movement value could only be 

satisfactory for use as a limit if it refers to a value determined from 

what is acceptable for the foundation supported on the piles.  In my 

opinion, a definition such as that suggested by the authors is not 

relevant for the LRFD. 

 

Second, the authors assume that the pile toe response exhibits an 

ultimate resistance.  However, there is no such thing as an ultimate 

toe resistance.  The load reaching the pile toe will result in an 

increasing pile toe movement with no distinct trend change that 

could be taken to be representative for an ultimate resistance.  This 

fact has been well-established in full-scale tests on instrumented 

piles with direct measurement of pile toe load (stress) response.  

Figure 1 shows two pile toe load-movement responses, so-called q-z 

functions, typical for the pile toe response.  The curve denoted 

“Ratio” follows Eq. 1 which expresses the stress-movement as the 

ratio of any two resistances set equal to the ratio of the respective 

movements raised to an exponent.  The curve denoted “Hyperbolic” 

follows Eq. 2 is a hyperbolic relation of the stress as a function of 

the movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1   Two typical pile-toe load-movement curves:  q-z functions 
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where r1 = toe resistance for a point on the curve, 

    e.g., Point 1 

  δ1 = movement for Point 1 

  r2 = toe resistance for a point on the curve, 

    e.g., Point 2 

  δ2 = movement for Point 2 

  ϴ = an exponent 

 

 

           (2) 

 

 

where r = force variable 

  δ = movement variable 

  C1 = the slope of the line in a r/δ vs. δ diagram;  

    the Chin-Kondner plot 

  C2 = ordinate intercept the r/δ vs. δ diagram 

 

 

 

 

          r1/δ1 = any load/movement pair  

  ru = resistance occurring at infinite movement 

 

 

A pile toe that would respond to load by a curve not qualitatively 

similar to those shown in Figure 1 would be affected by some 

special conditions, such as residual load causing a change of 

curvature due to the fact that the pile toe initially is in a re loading 

mode, or because the soil around the pile toe is cemented with the 

cementation breaking down as the load increases, or other non-

continuous influence causing sudden change of response.  Of the 

two q-z functions shown in the figure, I have found the Ratio 

Function to be the one that best models the pile toe response from 

small to a large toe movement. 

 

Third, regarding pile shaft response to load, the authors’ equation 

for the unit shaft resistance of a pile-soil element includes four 

parameters:  the “relative density”, DR, (density index, ID, in 

international standard), the coefficient of earth stress at rest, K0, the 

tangent of the soil friction angle called “triaxial-compression 

critical-state friction-angle”, Φc , and a coefficient governed by 

angularity, C1. 
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The Density Index is the ratio between (emax - eactual) and (emax - emin) 

and it is a highly imprecise and non-reproducible parameter.  A void 

ratio value determined on a sand sample is usually provided with 

two-decimal precision.  However, the value is rarely more precise 

than by about 0.05±.  For loose to compact uniform sand, the in-situ 

void ratio values typically range from about 0.20 through 0.60.  

Therefore, the ID for a given sample, say, with an in-situ void ratio 

of 0.40, where typically, the maximum and minimum void ratios lie 

between 0.30 and 0.70, the ID is 75 %.  However, considering an 

error of 0.05 up or down for each of the three values, the error in a 

particular ID could be almost 20 %.  Tavenas and LaRochelle 

(1972) presented a detailed study of the Density Index and indicated 

that the average error is 18 % and concluded that the index “cannot 

be used as a base parameter of any calculation”. 

 

The coefficient of earth stress as rest, K0, before piles are installed is 

often assumed to be about 0.5.  Where piles have been driven into 

the sand, the associated vibrations and displacement will usually 

increase the earth stress acting against the pile and the new earth 

stress coefficient can exceed unity.  In dense overconsolidated sand, 

where typically the in-situ K0 is greater than unity, the sand can 

actually become looser than before the pile driving and the K0-value 

diminishes.  (Usually, however, there would be little need for piles 

in such sands). 

 

I do not know how large the usual imprecision is for the “triaxial-

compression critical-state friction-angle”.  However, I would expect 

that it would be overoptimistic to expect a precision better than one 

degree, which means an error of about 5 % in the tan δ or tan ϕ. 
 

According to the authors, the coefficient to adjust to the angularity 

of the sand can range from 0.63 through 0.71, i.e., a range of about 

10 %.  Determining sand angularity is rarely a part of the usual site 

investigation, however. 

  
________________________________________________________ 

 

Moreover, the authors’ equation for unit shaft resistance does not 

include any similar adjustment for mineral composition.  For 

example, the shear response of silica sand is quite different to that of 

calcareous sand, and the shear response of sand containing just a 

few percent of mica will have a less stiff shear response compared to 

sand with no mica content.  Moreover, sand containing fines will 

show a different response to that of uniform (clean?) sand. 

 

Naturally, the uncertainties the parameters do not all work in the 

same direction.  However, in my opinion, in an actual case, the 

combined effect of the errors will result in a non-trivial total error of 

the unit shaft resistance evaluated from the authors’ equation.  

Moeover, the imprecisions in the relation for the shaft resistance and 

the assumption of an ultimate toe resistance raise questions on the 

practicality of using the authors’ shaft and toe relations for 

assessment of the LRFD approach. 
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