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DISCUSSION

Discussion of “A simplified nonlinear approach for single pile
settlement analysis”1
Bengt H. Fellenius

The authors have proposed an interesting t–z or q–z function for
use in modeling strain-softening response of a pile subjected to a
static loading test. A t–z or q–z function describes the relation
between the amount of stress (or load) necessary to generate
movement of a soil element (or pile head) in a static loading test.
The authors' function fits in well with existing functions: the ratio
function, the 80-% function, the hyperbolic function, and the exponential
function, summarized below.

The ratio function is defined by eq. [D1]

[D1] r � ru� �
�u

�b

where

r = resistance variable
ru = ultimate resistance
� = movement variable

�u = movement mobilized at ru
b = an exponent ranging from a small value through unity

The 80-% function is defined by eqs. [D2a] through [D2c]

[D2a] r �
��

C1� � C2

[D2b] C1 �
1

2ru��u

[D2c] C2 �
��u

2ru

where

r = resistance variable
� = movement variable
ru = ultimate resistance
�u = movement at ultimate resistance, ru
C1 = slope of the straight line in the ��/q versus movement (�)

diagram
C2 = ordinate intercept of the straight line in the ��/r versus

movement (�) diagram

The hyperbolic function is defined by eq. [D3]

[D3] r �
�

C1� � C2

where

r = resistance variable
� = movement variable
C1 = 1/r + (also the slope of the line in a r/� versus movement (�)

diagram)
C2 = ordinate intercept

The exponential function is defined by eq. [D4]

[D4] r � ru(1 � e�b�)

where

r = resistance variable
� = movement variable
b = coefficient
e = base of the natural logarithm = 2.718

The authors' function, here called the “Zhang” function, can be
rewritten as shown in eqs. [D5a] through [D5f]

[D5a] r �
�(a � c�)
(a � b�)2

[D5b] ru �
1

4(b � c)

[D5c] �u �
a

b � 2c

[D5d] b �
1
2ru

�
a
�u

[D5e] c �
1
4ru

�
a
�u

[D5f]
ru
r�

�
c

b2

where

r = resistance variable
ru = ultimate resistance
r∞ = resistance at infinite movement
� = movement variable

�u = movement mobilized at ru
a = “independent” coefficient

b, c = “dependent” coefficients
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The t–z functions can be employed to fit a calculated stress–
movement record to the response measured in a static loading
test. It is best achieved by first establishing from the measured
curve the ultimate resistance, ru, and the movement for this re-
sistance, �u, employing suitable definitions and judgment. As
each of the five t–z curves rely on a single additional parameter, a
simple trial-and-error approach will achieve the best fit between
the calculated and measured curves. Fitting by the 80-% and hy-
perbolic functions can be speeded up by determining the respec-
tive C1 and C2 parameters from a linear regression over a suitably
selected range of measured r–� values.

The five functions are illustrated in Fig. D1 comprising load–
movement curves calculated for an assumed ultimate resistance,
ru, of 100%, occurring at a movement, �u, of 4 mm. The 80-%
function is always strain-softening after the ultimate resistance.
The figure shows that the Zhang function for a strain-softening to
50% of ru at large movement is practically equal to the curve
calculated by the 80-% function. However, the Zhang function
allows for the post-peak softening to take different shapes,
whereas the 80-% function has a fixed shape (once the values of ru
and �u are selected).

In an actual case, different soil layers will have different stress–
movement curves. Some will be strain-softening, as in the au-
thors' case, other layers will be strain-hardening. While Fig. D1
shows the curves for a common point, ru and �u, the curves can be
made to be quite different before and after the common point.
Therefore, it is always possible to fit one or more of the functions
to a given measured stress–movement curve.

The definition of the 80-% function is the requirement that the
stress–movement curve must also go through a point that has a
stress equal to 80% of the chosen ultimate resistance, ru, and a
movement that is equal to 25% of �u. Thus, the function can be
used to also model the stress–movement for a case where the
ultimate resistance, ru, is assumed to occur prior to the peak value
if the peak value and its movement are assumed to be 1.25ru and
4�u, respectively.

The authors also proposed that the pile toe stress–movement
(or load–movement) should be modeled by a bi-linear curve. This
recognizes that a pile toe does not show a failure mode, but the
resistance always increases with movement. However, numerous
full-scale static loading tests with measurements of toe stress ver-
sus toemovement have shown that the pile toe response is always
curved for both the initial portion and the large movement
portion, and the pile toe q–z response is usually similar to the
ratio function. Figure D2 shows a typical ratio function stress–
movement curve from start to large movement (150 mm) and a
bi-linear relation fitted to the response with the “kink” at
25 mm movement.

Figure D3 shows the same records plotted with the maximum
movement reduced to 25 mm. The stress scale is the same as in
Fig. D2.While the assumed bi-linear response could be adjusted to
a reasonable fit between the start and up to the 25mmmovement
with a “kink” at about a movement of 5 or 10 mm, the new set
would not fit the response beyond 25- mm. To fit beyond 25 mm
would require that the bi-linear approach be changed to tri-linear.
And if the fit would be to the range from the start to 5 mm (the
authors' toe movement reference), as well as to several ranges
beyond 5 mm, a multi-linear approach would be necessary. In-
deed, the bi-linear approach is an unnecessary simplification, be-
cause the ratio function (which best represents the pile toe
response) can just as easily as the bi-linear response be coded into
a computer software for analysis of the response.

The information presented for the authors' parametric study of
an 800mm diameter, 20 m long pile in a soil with a uniform shaft
resistance of 50 kPa does not include the toe resistance. However,
the 50 kPa unit shaft resistance value results in a total shaft resis-
tance of 2500 kN and, as the authors' Figs. 7 and 8 show a final
resistance of 8000 kN at about 30 mm pile head movement, the

Fig. D1. Compilation of t–z curves for a common ru = 100% and �u =
4 mm.
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Fig. D2. Toe stress–movement by bi-linear modeling and by the
ratio method to 150 mm.
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Fig. D3. Toe stress–movement by bi-linear modeling and by the
ratio method to 25 mm.
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pile toe resistance at the applied load of 8000 kN would be
5500 kN. This toe resistance is stated to have developed at the
maximum pile head movement of about 30 mm. As the pile com-
pression for the 8000 kN pile head load is about 25 mm, the pile
toe movement at the 8000 kN load is about 5 mm. However, a toe
resistance of 5500 kNmobilized at such small toe movement does
not correlate well to a shaft resistance of only 50 kPa immediately
above the pile toe (presumably the soils above and below the pile
toe are similar). It is not likely that the shaft resistance would be
constant with depth, however. It would normally be smaller near
the ground surface and larger at depth and, thus, correlate better
to the toe resistance. The authors' assumption of constant shaft
resistance is an additional unnecessary simplification.

The shaft resistance for a 20 m long pile in homogenous soil,
whether it is sand or clay, would be responding in accordance to
the effective stress. An effective stress analysis employing a con-

stant value of effective stress beta-coefficient would have been a
more realistic assumption than the authors' assumption of con-
stant unit shaft resistance. The 2500 kN total shaft resistance
correlates to a beta-coefficient of about 0.5, a large value in most
nonresidual soils. When the results from a static loading test ap-
pear to show a load distribution answering to a constant unit shaft
resistance, this is often a consequence of residual load in the pile.
Piles, also bored piles, are usually affected by locked-in load
(“residual load”), which needs to be considered in every evalua-
tion of test results.

I realize that the parametric study is not an actual case and is
used to demonstrate the versatility of the authors' computer pro-
gram. However, inasmuch as the paper presents conclusions per-
taining to engineering practice, a more “real” case would in my
opinion have served better for demonstrating the results of the
authors' methods and analyses.
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